Why kids conceived post IVF face low birth weight risk

Galgotias Ad

London, Feb 13 (IANS) A team of scientists has identified a genetic cause for the increased risk of low birth weight in babies born following assisted reproductive technologies such as IVF.

Previous studies have identified treatment-related causes for low birth weight, but this is the first time researchers have been able to identify an underlying genetic factor.

The paper, published in the journal Nature Communications, focussed on the DNA of babies born both from spontaneous pregnancies and after fertility treatment.

The team led by those at Vrije Universiteit Brussel (VUB) in Belgium found that in both groups, a greater risk of low birth weight was associated with certain mutations in mitochondrial DNA, and that these mutations were slightly more common in children born after fertility treatment.

Mitochondria are the “energy factories” in the cell that are inherited through the mother. If they do not function properly, as they develop, they can cause a variety of health problems such as cardiovascular disease and diabetes.

To determine whether these mutations are transmitted from mother to child, the researchers also studied the DNA of the mothers. Analysis showed that children born after fertility treatment have more new, non-transmitted mutations than babies conceived without assistance

As a final step, the group studied oocytes obtained through hormonal stimulation and through natural cycle, to determine whether hormonal stimulation was harmful. The mitochondrial mutations did not necessarily appear to be caused by hormonal stimulation.

“In particular, a combination of age-related factors in conjunction with hormonal stimulation can lead to a higher risk of abnormal oocytes,” said Claudia Spits, professor at VUB.

“The risk of mutations in the oocyte’s mitochondrial DNA increases with age. During a normal cycle, mechanisms exist to remove mutated oocytes and select only healthy cells. However, with hormonal stimulation to boost oocyte production, this mechanism is switched off and mutated oocytes are released,” Spits added.

The team will conduct further studies, but these insights can be immediately implemented in assisted reproductive technology (ART) treatments to limit the risk of oocytes with mutagenic mitochondria.

“It appears that the larger the number of oocytes obtained after hormonal stimulation, the higher the chance of mutations. In the future, we can pay more attention to achieving a proper balance between an adequate oocyte yield and minimising the risk of mutations,” Spits said.



Comments are closed.